A Mixed-Methods Evaluation to Measure 4-H STEM Program Quality
DOI:
https://doi.org/10.5195/jyd.2020.835Keywords:
4-H STEM, program quality, program evaluation, out-of-school time, mixed-methodsAbstract
The 4-H Science: Building a 4-H Career Pathway Initiative was a 3-year collaboration among National 4-H Council, Lockheed Martin, and state 4-H grantees to help more than 50,000 youth in 13 states develop STEM and workforce skills for STEM professions. A mixed-methods design used observations and interviews to assess program quality. Researchers observed 4-H STEM programming and conducted individual and focus group interviews with youth, parents, community volunteers, corporate volunteers, and professionals. Observations were conducted using a validated observational tool, the Out-of-School Time (OST) Observation Instrument with STEM Plug-In. This instrument measured youth relationship building, youth participation, staff relationship building, staff instructional strategies, activity content and structure, and STEM instruction. Findings from the observations and interviews were combined to assess program quality. Sites scoring highest on the OST Observation Instrument reported using quality STEM curriculum, especially National 4-H Youth Science Day lessons. The 4-H STEM programs demonstrated highly evident and consistent youth relationship building (e.g., being friendly and collaborative) and youth participation (e.g.., contributing ideas and taking leadership). Yet, in many cases, STEM youth skill development (e.g., drawing connections to real-world concepts) and STEM staff instructional practices (e.g., discussing how youth could pursue STEM content through their education and/or career) were inconsistent and rarely evident. Recommendations include substantive professional and volunteer development for both STEM competencies and enhanced youth development. The OST Observation Instrument with STEM Plug-In provided a comprehensive tool to evaluate program quality, and it is recommended for use in evaluating other 4-H STEM programs.
References
Creswell, J. W. (2015). A concise introduction to mixed methods research. Los Angeles: Sage.
Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Sage.
Donaldson, J. L., & Franck, K. L. (2018). 4-H Science: Building a 4-H career pathway initiative final report. University of Tennessee Extension Publication W668. https://extension.tennessee.edu/publications/Documents/W668.pdf
Dorsen, J., Carlson, B., & Goodyear, L. (2006, February). Connecting informal STEM experiences to career choices: Identifying the pathway. ITEST Learning Resource Center.
Flores-Lagunes, A., & Timko, T. (2015). Does participation in 4-H improve schooling outcomes? Evidence from Florida. American Journal of Agricultural Economics, 97(2), 414-434.
Fu, A. C., Kannan, A., & Shavelson, R. J. (2019). Direct and unobtrusive measures of informal STEM education outcomes. In A. C. Fu, A. Kannon, & R. J. Shavelson (Eds.), Evaluation in informal science, technology, engineering, and mathematics education. New Directions for Evaluation, 161, 35-57.
Hawley, L.R., Stevens, J. Pense, S., & Perez, A. (2017). Click2SciencePD: Triangulated evaluation. University of Nebraska Academy for Methodology, Analytics & Psychometrics. http://www.click2sciencepd.org/sites/default/files/attachments/MAP_ClickTriangulatonReport_FINAL.pdf
Heck, K. E., Carlos, R. M., Barnett, C., & Smith, M. H. (2012). 4-H participation and science interest in youth. Journal of Extension, 50(2). https://www.joe.org/joe/2012april/a5.php
Horton, R. L., & House, P. L. (2015). Fish farm challenge provides STEM design experience for youth. Journal of Extension 53(4). Article 4IAW6. https://www.joe.org/joe/2015august/iw6.php
Larson Nippolt, P. (2012). 4-H Science: Evaluating Across Sites to Critically Examine Training of Adult Facilitators. Journal of Youth Development 7 (4) Article 120704FA001. https://jyd.pitt.edu/ojs/jyd/article/view/114/100
Lerner, R. M., & Lerner, J. V. (2013). The positive development of youth: Comprehensive findings from the 4-H Study of Positive Youth Development. https://4-h.org/wp-content/uploads/2016/02/4-H-Study-of-Positive-Youth-Development-Full-Report.pdf
Mielke, M., & Butler, A. (2013). 4-H science initiative: Youth engagement, attitudes, and knowledge study. Policy Studies Associates. https://files.eric.ed.gov/fulltext/ED591155.pdf
National 4-H Council. (2015). Filling the STEM pipeline: National 4‑H Council and Lockheed Martin to prepare more diverse youth for STEM careers. https://4-h.org/media/filling-the-stem-pipeline-national-4-h-council-and-lockheed-martin-to-prepare-more-diverse-youth-for-stem-careers/
National Informal STEM Education Network (2015). Profiles of national youth-serving organizations: Collaborating with youth-serving organizations on STEM activities locally. https://www.nisenet.org/sites/default/files/Profiles%20national%20youth%20serving%20organizations%2011-28-15%20FINAL.pdf
Nelson, R. K. (2017). Stakeholder perspectives on site-visit quality and use. In R. K. Nelson & D. L. Roseland (Eds.), Conducting and using evaluative site visits. New Directions for Evaluation, 156, 57-73
Patton, M. Q. (2015). Qualitative research and evaluation methods (4th ed.). Sage.
Pechman, E. M., Mielke, M. B., Russell, C. A., White, R. N., & Cooc, N. (2008). Out-of-school time (OST) observation instrument: Report of the validation study. Policy Studies Associates.
Rice, J. E., Rugg, B., & Davis, S. (2016). Minnesota 4-H Science of Agriculture Challenge: Infusing agricultural science and engineering concepts into 4-H youth development. Journal of Extension, 54(3). https://www.joe.org/joe/2016june/iw4.php
Riley, D., & Butler, A. (2012). Priming the pipeline: Lessons from promising 4-H science programs. Policy Studies Associates.
Ripberger, C., & Blalock, L. B. (2013). Training teens to teach agricultural biotechnology: A national 4-H science demonstration project. Journal of Youth Development 8(3) Article 130803FA003. https://jyd.pitt.edu/ojs/jyd/article/view/84
Shah, A. M, Wylie, C., Gitomer, D., & Noam, G. (2018). Improving STEM program quality in out‐of‐school‐time: Tool development and validation. Science Education, 102(2), 238-259. https://doi.org/10.1002/sce.21327
Worker, S.M., Schmitt-McQuitty, L., Ambrose, A., Brian, K., Schoenfelder, E., & Smith, M.H. (2017). Multiple-Methods Needs Assessment of California 4-H Science Education Programming. Journal of Extension 55(2). Article 2RIB4. https://www.joe.org/joe/2017april/rb4.php
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- The Author retains copyright in the Work, where the term “Work” shall include all digital objects that may result in subsequent electronic publication or distribution.
- Upon acceptance of the Work, the author shall grant to the Publisher the right of first publication of the Work.
- The Author shall grant to the Publisher and its agents the nonexclusive perpetual right and license to publish, archive, and make accessible the Work in whole or in part in all forms of media now or hereafter known under a Creative Commons Attribution 4.0 International License or its equivalent, which, for the avoidance of doubt, allows others to copy, distribute, and transmit the Work under the following conditions:
- Attribution—other users must attribute the Work in the manner specified by the author as indicated on the journal Web site;
- The Author is able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the Work (e.g., post it to an institutional repository or publish it in a book), as long as there is provided in the document an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post online a prepublication manuscript (but not the Publisher’s final formatted PDF version of the Work) in institutional repositories or on their Websites prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the Publisher-assigned DOI (Digital Object Identifier) and a link to the online abstract for the final published Work in the Journal.
- Upon Publisher’s request, the Author agrees to furnish promptly to Publisher, at the Author’s own expense, written evidence of the permissions, licenses, and consents for use of third-party material included within the Work, except as determined by Publisher to be covered by the principles of Fair Use.
- The Author represents and warrants that:
- the Work is the Author’s original work;
- the Author has not transferred, and will not transfer, exclusive rights in the Work to any third party;
- the Work is not pending review or under consideration by another publisher;
- the Work has not previously been published;
- the Work contains no misrepresentation or infringement of the Work or property of other authors or third parties; and
- the Work contains no libel, invasion of privacy, or other unlawful matter.
- The Author agrees to indemnify and hold Publisher harmless from Author’s breach of the representations and warranties contained in Paragraph 6 above, as well as any claim or proceeding relating to Publisher’s use and publication of any content contained in the Work, including third-party content.
Revised 7/16/2018. Revision Description: Removed outdated link.